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Abstract. Hyperspectral image (HSI) denoising is a prerequisite for many subsequent applications. For an HSI, the level and type
of noise often vary with different bands and spatial positions, which make it difficult to effectively remove noise while preserving
textures and edges. To alleviate this problem, we propose a new total-variation model. The main contribution of the proposed
approach lies in that the adaptive regularization terms in both the spatial and the spectral dimensions are designed separately and
then combined into a unified framework. The 2 separate regularization terms allow a better description of the intrinsic nature
of the original HSI data and can simultaneously penalize the noise from both the spatial and spectral perspectives. The designed
weights for the regularization terms are positively correlated with the magnitude of the noise intensity and negatively correlated
with the signal variation; thus, the original signal can be accurately retained and the noise can be effectively suppressed. To
efficiently process the HSI, which appears as a huge data cube, a new optimization algorithm based on the alternating direction
method of multipliers (ADMM) procedure is proposed to solve the new model. Experiments using HYDICE and AVIRIS images
were conducted to validate the effectiveness of the proposed method.

Résumé. Hyperspectrale l’image (HSI) débruitage est une condition préalable pour de nombreuses applications ultérieures.
Pour un HSI, le niveau et le type de bruit varie souvent avec différents groupes et positions spatiales, ce qui rend difficile
d’éliminer efficacement le bruit tout en préservant les textures et les bords. Pour pallier ce problème, nous proposons un nouveau
modèle de variation totale. Les principales contributions de l’approche proposée mensonge dans la conception des termes de
régularisation adaptative dans les deux dimensions spatiales et spectrales, et en les combinant dans un cadre unifié. Les deux
termes de régularisation séparés permettent une meilleure description de la nature intrinsèque des données HSI original et peuvent
pénaliser simultanément le bruit à la fois des perspectives spatiales et spectrales. Les poids conçus pour les termes de régularisation
sont en corrélation positive avec la grandeur de l’intensité du bruit et corrélation négative avec la variation de signal; ainsi, le
signal d’origine peut être retenu avec précision et le bruit peut être efficacement supprimée. Pour traiter efficacement le HSI, qui
apparaı̂t comme un énorme cube de données, un nouvel algorithme d’optimisation basé sur la méthode de direction alternée de
multiplicateurs «alternating direction method of multipliers» (ADMM) procédure est proposée pour résoudre le nouveau modèle.
Des expériences utilisant des images AVIRIS et HYDICE et ont été menées afin de valider l’efficacité de la méthode proposée.

INTRODUCTION
With their high spectral resolution, hyperspectral images

(HSIs) are commonly used in applications requiring fine identifi-
cation of materials or precise estimation of physical parameters.
As a result of the physical limitations of the sensors (Zhang et al.
2012), HSIs often contain different levels of noise, which not
only affects the visual quality, but also can reduce the accuracy

Received 1 August 2015. Accepted 15 February 2016.
*Corresponding author. e-mail: zhanghongyan@whu.edu.cn.

of the subsequent processing, e.g., unmixing (Iordache et al.
2012), classification (Harris et al. 2006), clustering (Zhang et
al. 2016) and fusion (Jiang et al. 2014). Therefore, with the rapid
development of applications using HSIs, the denoising task is
becoming more and more important.

For gray images, there are a variety of denoising meth-
ods, e.g., the total variation (TV) model (Rudin et al. 1992),
Gaussian scale mixtures (Portilla et al. 2003), nonlocal means
(Buades et al. 2005), wavelets (Selesnick 2002), anisotropic
diffusion (Perona and Malik 1990), and sparse representation
(Elad and Aharon 2006). Intuitively, we can apply these meth-
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ods to an HSI in a band-by-band manner. However, because the
strong correlations between the HSI bands are overlooked, these
methods often perform poorly. To deal with this problem, some
researchers (Othman and Qian 2006; Chen and Qian 2011) have
proposed to first decorrelate the HSI bands and then successively
apply denoising methods in both the spatial and spectral dimen-
sions. These methods work well when the HSI already has a
high signal-to-noise ratio (SNR). The redundancy of the spectral
bands can also be utilized by subspace-based methods, which
first rearrange the HSI into a matrix whose columns contain the
spectral signatures and then separate the signal from the noise by
estimating the signal subspace (Kuybeda et al. 2007; Acito et al.
2010). However, the common approach is to extend the well-
known 2-D denoising methods to higher dimensions. For exam-
ple, Chen et al. (2011) extended Sendur and Selesnick’s (2002)
well-known bivariate wavelet thresholding method from gray
image denoising to HSI denoising with a 3-D wavelet transform;
Muti and Bourennane (2007) extended the classic 2-D Wiener
filtering to multidimensional Wiener filtering based on a tensor
model and multilinear algebra; Martı́n-Herrero (2007) extended
the 2-D anisotropic diffusion for HSIs with 2 precisely defined
diffusion processes in the spatial and spectral dimensions, re-
spectively; and Qian et al. (2012) extended the traditional 2-D
nonlocal means to a 3-D perspective. In recent years, methods
based on tensor decomposition (Letexier and Bourennane 2008;
Liu et al. 2012; Guo et al. 2013; Lin and Bourennane 2013b)
and anisotropic diffusion (Méndez-Rial et al. 2010; Wang et al.
2010; Mendez-Rial and Martin-Herrero 2012) have been exten-
sively studied. In addition, some sophisticated strategies have
also been investigated with new, emerging technologies. For ex-
ample, by stacking a local patch of an HSI into a 2-D matrix,
Zhang et al. (2014) exploited low-rank matrix recovery theory to
denoise the patch. By stacking cubes of voxels into a 4-D group,
Maggioni (2013) applied a 4-D transform and collaborative fil-
tering for volumetric data denoising and reconstruction. Based
on these existing methods, some hybrid methods have also been
investigated, such as combining nonlocal means with sparse rep-
resentation (Qian and Ye 2013), wavelet packet transform with
TUCKER3 decomposition (Lin and Bourennane 2013a), sparse
representation with wavelets (Zelinski and Goyal 2006; Rasti
et al. 2014), principal component analysis with block matching
3-D (Chen et al. 2012) or 4-D filter (Chen et al. 2014), sparse
representation with low-rank constraint (Zhao and Yang 2015)
and TV with low-rank constraint (He et al. 2016).

As a simple but effective model, the TV model has been
widely used in imaging science, in applications such as im-
age restoration, superresolution, segmentation, inpainting, and
unmixing. Very recently, the TV model has also been applied
to HSI denoising. For an HSI, there are 2 spatial dimensions
(along-track and cross-track) and 1 spectral dimension (wave-
length). Yuan et al. (2012) extended the traditional TV model to
the spatial and spectral adaptive hyperspectral TV (SSAHTV)
model. The SSAHTV model denoises an HSI with the TV reg-
ularization in the spatial dimensions and can adjust the degree

of smoothing on different pixels and different bands with a sin-
gle regularization parameter. This model has been proved to be
much more effective than the procedure that directly applies
the traditional TV model to each band of the HSI. Although
the degree of smoothing can be adjusted in a 3-D manner, the
model is still not a real 3-D TV model without considering the
first-order difference in the spectral dimension. The later work
by Yuan et al. (2014) first applied a 2-D adaptive TV model to
an HSI twice, from the front and side views, respectively, and
then adopted a Q-weighting strategy to fuse the 2 results. The
improvement of this approach is a result of implicitly using the
TV regularization in the spectral dimension. In addition, there
are also methods that explicitly adopt the TV regularization
in the spectral dimension, such as the methods proposed in Li
et al. (2010) and Zhang (2012); however, the methods proposed
in those studies cannot adjust the degree of smoothing, which
can significantly affect the denoising performance for an HSI
with a nonstationary noise variance. To sum, although the TV
model has been used for HSI denoising, a 3-D TV model for
HSI denoising, which is simple, effective, and can deal with the
signal and noise variation, is still lacking.

In this work, we propose a new combined spatial and spec-
tral weighted hyperspectral total variation (CSSWHTV) model
for HSI denoising. As a 3-D data cube, the HSI is denoised not
only in the spatial dimensions but also in the spectral dimension.
The prior model is a combination of 2 separate, finely designed
regularization terms that can penalize the variations of pixels
in both the spatial and spectral dimensions. Unlike the existing
3-D TV models, the proposed model can automatically adjust
the penalizing strength for the variations of the different pixels.
To better attenuate the noise and protect the original information,
the weight is designed to be positively correlated with the mag-
nitude of the noise intensity and negatively correlated with the
signal variation. To solve the new CSSWHTV model, we pro-
pose a fast algorithm based on the alternating direction method
of multipliers (ADMM; Eckstein and Bertsekas 1992; Gabay
and Mercier 1976), a method from the augmented Lagrangian
family. From the experimental results with both simulated and
real-image data, it is shown that the proposed CSSWHTV model
works well, not only for random noise but also for striping noise
(Acito et al. 2011b), which validates the effectiveness of the
proposed CSSWHTV method.

The remainder of this article is organized as follows: In “Pro-
posed Method,” the proposed CSSWHTV model is introduced.
In “Numerical Solution,” we briefly review the ADMM proce-
dure, and then the proposed algorithm to solve the CSSWHTV
model is presented. The experimental results are presented in
“Experiments and Discussion.” “Conclusions” concludes the
article.

PROPOSED METHOD
Many previous studies (Chen and Qian 2011; Othman and

Qian 2006) have shown that, to acquire better results, the de-
noising process should operate not only on the spatial dimen-
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sions but also on the spectral dimension. Due to the difference
in the signal nature of the spatial and the spectral dimensions
(Othman and Qian 2006), we chose to first design the corre-
sponding weighted TV regularization terms separately and then
combine them effectively.

The Regularized Hyperspectral Image Denoising Model
A hyperspectral data cube F with M samples, N lines, and B

bands can be viewed as a 3-D scalar image of sizeM ×N × B,
and it can be expressed as

F = U+ N, [1]

where U is the ideal noise-free data, and N is the noise. The
denoising process is to seek the original data U from the noisy
observation F. In general, noise can be classified as random noise
or fixed-pattern noise. Photon noise (also called shot noise) and
thermal noise are 2 examples of random noise, whereas striping
noise is a typical example of fixed-pattern noise (Acito et al.
2011b). In push-broom sensors, striping noise, which is caused
by the imperfect calibration of the detectors, might appear as
a series of stripes in the along-track direction. For many ex-
isting sensors such as the Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS), the random photon noise, which is sig-
nal dependent, is negligible with respect to the random thermal
noise, which is signal independent (Acito et al. 2011a). However,
as the performance of the electronic components is improved in
the new-generation hyperspectral sensors, the signal-dependent
photon noise is becoming as important as the signal-independent
thermal noise (Alparone et al. 2009). In this study, to focus on
the denoising model, we simply assume N is random and in-
dependent of U. The noise variances of the different bands are
assumed to be different because of the different wavelength re-
sponses of the sensors (Martı́n-Herrero 2007). For convenience,
we define the (x, y, z) coordinates as shown in Figure 1; thus,
ui,j,k , fi,j,k , and ni,j,k denote the pixels of U, F, and N with
coordinates (i, j, k), respectively.

With these definitions, the HSI denoising model can be mod-
eled as a regularization-based problem:

Û = arg min

⎧⎨
⎩1

2

M∑
i=1

N∑
j=1

B∑
k=1

(ui,j,k − fi,j,k)2 + λR (U)

⎫⎬
⎭ [2]

The first term of Equation (2) is called the data fidelity term, and
the second is named the regularization term, which describes
the prior information of the original HSI. The regularization
parameter λ is a scalar that controls the relative contribution of
the data fidelity and the regularization terms.

Weighted Hyperspectral TV Regularization in
the Spatial Dimensions

In this section, the classic TV regularization term for a gray
image is first reviewed and then extended to HSIs based on

FIG. 1. A 3-D hyperspectral cube and the defined coordinates.

vectorial TV theory. Finally, the weighted TV regularization
term in the spatial dimensions for HSIs is proposed with a
detailed analysis of the weight.

For a gray image ũ of size M ×N , the classic 2-D isotropic
and anisotropic TV regularization terms can be expressed as
Equations (3) and (4), respectively:

R (ũ) = TV1 (ũ) =
M∑
i=1

N∑
j=1

√(∇xũi,j

)2 + (∇yũi,j

)2
, [3]

R (ũ) = TV2 (ũ) =
M∑
i=1

N∑
j=1

(∣∣∇xũi,j

∣∣+ ∣∣∇yũi,j

∣∣), [4]

where∇x and∇y are the first-order difference operators in the x

and y directions of the image plane, respectively, and ũi,j is the
pixel of ũ with coordinates (i, j ). Usually, isotropic regulariza-
tion is preferred over anisotropic regularization (Bioucas-Dias
et al. 2006; Yang et al. 2009). For convenience, the isotropic TV
regularization term is utilized in this study.

When viewed from the spatial perspective, an HSI of size
M ×N ×B can be seen as B stacked images of size M ×N , or
a multivalued image. Because the noise level and signal variation
vary significantly along the spectral dimension, the first thing to
consider is defining a TV model that can automatically balance
the penalizing strength for the different bands. This is achieved
by adopting the theory of the vectorial TV norm (Bresson and
Chan 2008). With the vectorial TV theory, the hyperspectral TV
regularization term in the spatial dimensions can be extended
from the classic isotropic TV regularization term in Equation
(3) to a multivalued case, and defined as

HTVSpatial(U) =
M∑
i=1

N∑
j=1

√√√√ B∑
k=1

[(∇xui,j,k

)2 + (∇yui,j,k

)2
]
.

[5]

D
ow

nl
oa

de
d 

by
 [

G
he

nt
 U

ni
ve

rs
ity

] 
at

 0
1:

00
 0

6 
A

pr
il 

20
16

 



4 CANADIAN JOURNAL OF REMOTE SENSING/JOURNAL CANADIEN DE TÉLÉDÉTECTION

This formula was first applied to HSI denoising in Yuan et al.
(2012), and interested readers can refer to that study for more
details.

It should be noted that by using Equation (5), the penalizing
strength is balanced for the different bands, which means it is
automatically adjusted to every HSI pixel just with the varying
index k, rather than the indexes i and j . In other words, the
penalizing strength is automatically balanced in the spectral di-
mension, rather than in the spatial dimensions. To automatically
adjust the penalizing strength in the spatial dimensions, a weight
Wi,j is added to Equation (5), and the weighted hyperspectral
TV regularization term in the spatial dimensions is defined as:

WTVSpatial(U) =
M∑
i=1

N∑
j=1

Wi,j

√√√√ B∑
k=1

[(∇xui,j,k

)2+(∇yui,j,k

)2
]
.

[6]

As 3-D data, every pixel in an HSI shows different variations
in both the spatial and spectral dimensions, e.g., the pixels near
the edges often have larger variations than those in the smooth
areas. For a noisy HSI, the noise intensity also varies in differ-
ent pixels. Therefore, to better attenuate the noise and retain the
variation in the pixels, the desired weight should be positively
correlated with the magnitude of the noise intensity and nega-
tively correlated with the variation of the signal. Based on this
principle, the weight Wi,j in the spatial dimensions is defined as

τi,j = FVi,j × (1− PVi,j /FVi,j )α, [7]

Wi,j = τi,j

τ̄
, τ̄ =

M∑
i=1

N∑
j=1

τi,j

/
MN , [8]

where α is a positive constant value and is empirically set as 2 in
this work. The vectorial gradient magnitudes FV i,j and PV i,j

are calculated on the 3-D data F and P as Equations (9) and
(10), respectively.

FV i,j =
√√√√ B∑

k=1

[(∇xfi,j,k

)2 + (∇yfi,j,k

)2
]
, [9]

PV i,j =
√√√√ B∑

k=1

[(∇xpi,j,k

)2 + (∇ypi,j,k

)2
]
, [10]

where pi,j,k denotes the pixel of P with coordinates (i, j, k),
and P is acquired by applying a simple 1-D mean filter [1/3 1/3
1/3] to F in the spectral dimension, as a coarse-noise attenuated
result. We chose the mean filter in the spectral dimension to take
advantage of its fast and effective noise attenuation property,
and we bypassed its weakness of introducing blurring along
the spectral dimension because only the gradients in the spatial
dimensions are calculated, as in Equation (10).

For the choice of the weight, a brief qualitative analyzation
can be given as follows. Because FV i,j is the vectorial gradi-

ent, it will not only be large for the pixels that have large noise
intensities but also for those on the edges. Recall that the de-
sired weight should be positively correlated with the magnitude
of the noise intensity and negatively correlated with the vari-
ation of the signal; we have to distinguish the edges from the
smooth areas under the influence of noise. This is achieved by
introducingPV i,j /FV i,j , because after the smoothing process
the vectorial gradient values will decrease much more signifi-
cantly for the pixels in plain areas than for those on the edges. A
simulation experiment will be given in “Experiments and Dis-
cussion” in order for the meaning of these terms to be visualized.

Weighted Hyperspectral TV Regularization in
the Spectral Dimension

As we know, the noise in an HSI can be viewed from both the
spatial dimensions and the spectral dimension, and the spatial
denoising process is not sufficient to effectively suppress the
noise in the spectral dimension. Therefore, a spectral denoising
process is needed to suppress the noise in the spectral dimen-
sion and to avoid the artifacts that might have been introduced by
the spatial denoising (Othman and Qian 2006; Martı́n-Herrero
2007). As with the discussion of the weighted hyperspectral TV
regularization in the spatial dimensions, the weighted hyper-
spectral TV regularization in the spectral dimension for HSIs is
discussed in this section, and the complementary nature of the
spatial and spectral denoising is further discussed in the next
section.

When viewed from the spectral perspective, an HSI of size
M × N × B can be viewed as a set of spectral signatures, or
a multivalued 1-D signal. By defining the first-order difference
operator in the spectral direction as ∇z, the traditional TV reg-
ularization term in the spectral dimension can be written as:

TVSpectral(U) =
B∑

k=1

M∑
i=1

N∑
j=1

∣∣∇zui,j,k

∣∣ [11]

In an HSI, the noise level and signal variation vary with dif-
ferent spectral signatures (Acito et al. 2011a), especially for the
spectral signatures with striping noise in certain bands. There-
fore, the denoising processes on every spectral signature should
not be separate, and Equation (11) does not meet this require-
ment. If we view the HSI as a multivalued 1-D signal and apply
the vectorial TV norm (Bresson and Chan 2008), the hyperspec-
tral TV regularization term in the spectral dimension is proposed
as

HTVSpectral(U) =
B∑

k=1

√√√√ M∑
i=1

N∑
j=1

(∇zui,j,k

)2
. [12]

Similar to that in the spatial dimensions, Equation (12) intro-
duces a coupling between the spectral signatures. In fact, Equa-
tion (12) can allow the adjustment of the denoising strength for
different spectral signatures, due to the property of the vectorial
TV norm.
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Note that the regularization term (12) can adjust only the
penalizing strength for different spectral signatures, rather than
the signal in different bands. To overcome this problem, a weight
W ′k , which is similar to that in the spatial dimensions, is added to
Equation (12), and the weighted hyperspectral TV regularization
term in the spectral dimension is defined as

WTVSpectral(U) =
B∑

k=1

W ′k

√√√√ M∑
i=1

N∑
j=1

(∇zui,j,k

)2
. [13]

Similar to the case in the spatial dimensions, the weight Wk is
defined as

τ ′k = FVk × (1−QVk/FVk)α, [14]

W ′k =
τ ′k
τ̄ ′

, τ̄ ′ =
B∑

k=1

τ ′k

/
B, [15]

where FVk and QVk are calculated on the 3-D data F and Q as
Equations (16) and (17), respectively.

FVk =
√√√√ M∑

i=1

N∑
j=1

(∇zfi,j,k

)2
, [16]

QVk =
√√√√ M∑

i=1

N∑
j=1

(∇zqi,j,k

)2
, [17]

where qi,j,k denotes the pixel of Q with coordinates (i, j, k);
Q is acquired by applying a simple 2-D mean filter [1/9 1/9
1/9; 1/9 1/9 1/9; 1/9 1/9 1/9] to F in the spatial dimensions,
as a coarse-noise attenuated result. By adopting the weight W ′k ,
the TV regularization term in the spectral dimension can also
automatically adjust the penalizing strength in a 3-D manner,
and thus, better results can be expected.

The Combined Spatial and Spectral Weighted
Hyperspectral TV Model

An HSI can be denoised with model (2) by the use of 1 of
the 2 regularization terms discussed, in the spatial dimensions:

Û = arg min
U

1

2

M∑
i=1

N∑
j=1

B∑
k=1

(ui,j,k − fi,j,k)2

+λWTVSpatial(U); [18]

or in the spectral dimension:

Û = arg min
U

1

2

B∑
k=1

M∑
i=1

N∑
j=1

(ui,j,k − fi,j,k)2

+λWTVSpectral(U). [19]

It is evident that better results can be expected by denoising
the HSI with Equations (18) and (19) sequentially, similar to the
strategy in Chen and Qian (2011) and Othman and Qian (2006),

or by fusing the 2 denoised results produced by using Equations
(18) and (19), respectively, similar to the strategy in (Yuan et al.
2014). However, we cannot guarantee that the combination of 2
local optimal results is the global best result. Because Equations
(18) and (19) share the same data fidelity term, the prior terms
can be easily combined into a unified regularization framework,
and the CSSWHTV model is proposed as

Û = arg min
U

1

2

M∑
i=1

N∑
j=1

B∑
k=1

(ui,j,k − fi,j,k)2

+λ1

M∑
i=1

N∑
j=1

Wi,j

√√√√ B∑
k=1

[(∇xui,j,k

)2 + (∇yui,j,k

)2
]

+λ2

B∑
k=1

W ′k

√√√√ M∑
i=1

N∑
j=1

(∇zui,j,k

)2
, [20]

where λ1 and λ2 are the regularization parameters. With the 2
regularization terms, the noise in the HSI can be removed from
both the spatial and spectral dimensions. By combining the 2
regularization terms, which are complementary in the spatial and
spectral perspectives, into a unified framework, the TV model
is effectively extended to a 3-D TV model, which is suitable for
3-D HSI data.

In the following, we present an example to help with the
understanding of the complementary nature of the 2 regulariza-
tion terms. In Figure 2, with the Washington DC Mall dataset
as an example, the denoising results using models (18), (19),
and (20) are presented, respectively. The data we used were the
same as the data used in “Experiments and Discussion,” and
the σ Equation (34) was set as 0.4. Note that for all the meth-
ods, the regularization parameters were adjusted to achieve the
highest SNR. The first row represents the denoised band 100
(1569.46 nm), the magnified local results in the red rectangle
area are shown in the second row, and the third row shows the
spectral curves of pixel (153, 124). From the results shown in
Figure 2, we can see that the noise in the spatial dimensions can
be effectively removed by the use of the model in (18), but there
is still noise in the spectral dimension. Conversely, the noise in
the spectral dimension can be effectively removed by the use of
the model in (19), but there is still noise remaining in the spatial
dimensions. However, by using the combined model in (20), not
only is the noise in each dimension effectively removed, but the
oversmoothing problem in both the spatial dimensions and the
spectral dimension is alleviated.

NUMERICAL SOLUTION
HSIs are much larger than gray images, so algorithms need

to be efficient. The proposed model in Equation (20) has 2 reg-
ularization terms and is difficult to solve by the use of gradient
methods. Luckily, in recent years, the ADMM algorithm has
proved to be able to effectively and efficiently solve many con-
strained and unconstrained problems in the image processing
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FIG. 2. Comparisons of the denoising results using different hyperspectral TV models. (a) The noisy data, (b) the result using
model (18), (c) the result using model (19), and (d) the result using model (20).

area, e.g., imaging inverse problems (Afonso et al. 2011) and
unmixing (Bioucas-Dias and Figueiredo 2010; Iordache et al.
2012, 2014; Zhao et al. 2013). In this section, we briefly review
the ADMM algorithm and then describe the version of ADMM
used to solve the CSSWHTV model.

ADMM Algorithm
ADMM benefits by decomposing a difficult problem into

a sequence of simple ones. The nature of ADMM is to use
a variable splitting procedure followed by the adoption of an
augmented Lagrangian method. Consider the following uncon-
strained problem:

min
x

f1(x)+ f2(Gx) [21]

where x ∈ Rn, G ∈ Rp×n, f1 : Rn → R̄, and f2 : Rp → R̄.
By creating a new variable,v ∈ Rn, Equation (21) is equivalent
to:

min
x,v

f1(x)+ f2(v), subject to v = Gx. [22]

Equation (22) is a variable splitting procedure, and then
an augmented Lagrangian method and a nonlinear block
Gauss–Seidel method are used to derive the ADMM algorithm
(for more details, see Afonso et al. 2011). The ADMM algo-
rithm used to solve Equation (21) is shown in Algorithm 1, and

the convergence of the ADMM algorithm is briefly given by
Theorem 1.

Theorem 1. (Eckstein–Bertsekas 1992). Considering the
problem in Equation (21), suppose G has a full column rank,
and f1 and f2 are closed, proper, convex functions. For any
μ > 0, if Equation (21) has a solution, then the sequence {xK}
converges to it. If Equation (21) does not have a solution, then
at least 1 of the 2 sequences, {vK} or {dK}, diverges.

Algorithm 1. Pseudocode of the ADMM algorithm to
solve Equation (21)

1. Initialization: set K = 0, choose μ > 0, v0, and d0

2. repeat:
3. xK+1 ← arg min

x
f1(x)+ μ

2

∥∥Gx− vK − dK
∥∥2

2

4. vK+1 ← arg min
v

f2(v)+ μ

2

∥∥GxK+1 − v− dK
∥∥2

2

5. Update the Lagrange multipliers:
dK+1 ← dK − (GxK+1 − vK+1)
6. Update the iteration: K ← K + 1

7. until stop criterion is satisfied.

Because many terms need to be used in this section, a com-
plete list of terms and definitions is provided in Table 1.
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TABLE 1
List of terms

Term (3-D data, vector,
number) Definition

F,f,fi,j,k The noisy data
U,u,ui,j,k The noise-free data, and u

corresponds to x in
Algorithm 1

Vx ,vx ,νx,(i,j,k) The added variable that plays
the role of the first-order
difference of the noise-free
data in the xdirection

Vy ,vy ,νy,(i,j,k) The added variable that plays
the role of the first-order
difference of the noise-free
data in the ydirection

Vz,vz,νz,(i,j,k) The added variable that plays
the role of the first-order
difference of the noise-free
data in the zdirection

Dx ,dx ,dx,(i,j,k) The Lagrange multiplier in
the xdirection

Dy ,dx ,dx,(i,j,k) The Lagrange multiplier in
the ydirection

Dx ,dx ,dx,(i,j,k) The Lagrange multiplier in
the zdirection

Wi,j The weighting matrix in the
spatial dimensions

W ′k The weighting vector in the
spectral dimension

subscripts (i, j, :) Denote the vector along the
spectral dimension at the
spatial position (i, j ) of the
corresponding 3-D data

subscripts (:, :, k) Denote the lexicographically
ordered vector of the kth
band of the corresponding
3-D data

superscript K Denotes the corresponding
variable in the Kth iteration

vector v ≡
⎡
⎣vx

vy

vz

⎤
⎦ Corresponds to v in

Algorithm 1

vector d ≡
⎡
⎣dx

dy

dz

⎤
⎦ Corresponds to d in

Algorithm 1

matrix G ≡
⎡
⎣∇x

∇y

∇z

⎤
⎦ The gradient operator that

corresponds to G in
Algorithm 1

By using variable splitting, Equation (20) is reformulated as:

Û = arg min
U

1

2

M∑
i=1

N∑
j=1

B∑
k=1

(ui,j,k − fi,j,k)2

+λ1

M∑
i=1

N∑
j=1

Wi,j

√√√√ B∑
k=1

[(
vx,(i,j,k)

)2 + (
vy,(i,j,k)

)2
]

+λ2

B∑
k=1

W ′k

√√√√ M∑
i=1

N∑
j=1

(
vz,(i,j,k)

)2

subject to ∇xui,j,k = vx,(i,j,k),

∇yui,j,k = vy,(i,j,k),∇zui,j,k = vz,(i,j,k). [23]

For problem (23), Step 3 in Algorithm 1 becomes Equation
(24), Step 4 in Algorithm 1 becomes Equations (25) and (26),
and Step 5 in Algorithm 1 becomes Equation (27), as follows:

uK+1 = arg min
u

1

2
‖u− f‖2

2 +
μ

2

∥∥∇xu− vK
x − dK

x

∥∥2

2

+μ

2

∥∥∇yu− vK
y − dK

y

∥∥2

2
+ μ

2

∥∥∇zu− vK
z − dK

z

∥∥2

2 ,

[24]

(VK+1
x , VK+1

y ) = arg min
Vx ,Vy⎧⎪⎨

⎪⎩
μ

2

∥∥∇xuK+1 − vx − dK
x

∥∥2
2 + μ

2

∥∥∇yuK+1 − vy − dK
y

∥∥2

2

+λ1

M∑
i=1

∑
N
j=1Wi,j

√
B∑

k=1

[(
vx,(i,j,k)

)2 + (
vy,(i,j,k)

)2
]

⎫⎪⎬
⎪⎭ ,

[25]

VK+1
z = arg min

Vz

{μ

2

∥∥∇zuK+1 − vz − dK
z

∥∥2

2

+ λ2

B∑
k=1

W ′k

√√√√ M∑
i=1

N∑
j=1

(
vz,(i,j,k)

)2

⎫⎬
⎭ , [26]

DK+1
x = DK

x − (∇xUK+1 − VK+1
x ),

DK+1
y = DK

y − (∇yUK+1 − VK+1
y ),

DK+1
z = DK

z − (∇zUK+1 − VK+1
z ).

[27]

Based on the Euler–Lagrange equation, the optimal u of
Equation (24) can be obtained by solving the following equation:

(I+ μ(∇T
x ∇x + ∇T

y ∇y + ∇T
z ∇z))uK+1

= f + μ∇T
x (vK

x + dK
x )+ μ∇T

y (vK
y + dK

y )+ μ∇T
z (vK

z + dK
z ).
[28]

Because the system is strictly diagonally dominant, the
most natural choice is the Gauss–Seidel method. Similar to the
method in Goldstein and Osher (2009), the numerical solution
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to this problem can be written component-wise as

uK+1
i,j,k =

μ

1+ 6μ
(uK

i−1,j,k + uK
i+1,j,k + uK

i,j−1,k

+uK
i,j+1,k + uK

i,j,k−1 + uK
i,j,k+1 + vK

x,(i−1,j,k)

−vK
x,(i,j,k) + dK

x,(i−1,j,k) − dK
x,(i,j,k) + vK

y,(i,j−1,k)

−vK
y,(i,j,k) + dK

y,(i,j−1,k) − dK
y,(i,j,k) + vK

z,(i,j,k−1)

−vK
z,(i,j,k) + dK

z,(i,j,k−1) − dK
z,(i,j,k))+

1

1+ 6μ
fi,j,k.

[29]

The solution Equations (25) and (26) can be obtained by the
well-known vect-soft threshold. For a vector a and threshold τ ,
the vect-soft threshold is defined as:

vect-soft {a, τ } =
{

max(‖a‖2 − τ, 0)

max(‖a‖2 − τ, 0)+ τ
· a
}

. [30]

Letting vx,(i,j, :), vy,(i,j, :), (∇xu− dx)(i,j, :), and (∇yu− dy)(i,j, :)

denote the vectors along the spectral direction at spatial position
(i, j ) of Vx , Vy , (∇xU−Dx), and (∇yU−Dy), respectively, the

solution of Equation (25) is given by

[
vK+1

x,(i,j, :)

vK+1
y,(i,j, :)

]
= vect-soft

⎧⎨
⎩
⎡
⎣ (∇xuK+1 − dK

x )(i,j, :)

(∇yuK+1 − dK
y )(i,j, :)

⎤
⎦ ,

λ1Wi,j

μ

⎫⎬
⎭ .

[31]
Letting vz,( : , : ,k) and (∇zu − dz)( : , : ,k) denote the lexico-

graphically ordered column vectors of the kth band of Vz and
(∇zU − Dz), respectively, the solution of Equation (26) is pre-
sented as

vK+1
z,( : , : ,k) = vect-soft

{
(∇zuK+1 − dK

z )( : , : ,k),
λ2W

′
k

μ

}
. [32]

Finally, the proposed algorithm is summarized in Algorithm
2. The convergence of the proposed algorithm is guaranteed by
Theorem 1 because it is an instance of ADMM with:

G ≡
⎡
⎣∇x

∇y

∇z

⎤
⎦ , [33]

which is a full column rank matrix, and Equations (24)–(26) are
closed, proper, convex functions.

Algorithm 2. Pseudocode of the proposed algorithm to solve the CSSWHTV model in Equation (20)

1. Initialization: set K = 0, choose μ > 0, U0 = F, V0
x = ∇xF, V0

y = ∇yF,V0
z = ∇zF, D0

x = 0, D0
y = 0, and

D0
z = 0

2. repeat:
3. Get UK+1 by calculating

uK+1
i,j,k = μ

1+6μ
(uK

i−1,j,k + uK
i+1,j,k + uK

i,j−1,k + uK
i,j+1,k + uK

i,j,k−1 + uK
i,j,k+1+

vK
x,(i−1,j,k) − vK

x,(i,j,k) + dK
x,(i−1,j,k) − dK

x,(i,j,k) + vK
y,(i,j−1,k) − vK

y,(i,j,k) + dK
y,(i,j−1,k) − dK

y,(i,j,k)

+vK
z,(i,j,k−1) − vK

z,(i,j,k) + dK
z,(i,j,k−1) − dK

z,(i,j,k))+ 1
1+6μ

fi,j,k

for every (i, j, k)

4. Get VK+1
x and VK+1

y by calculating[
vK+1

x,(i,j, :)

vK+1
y,(i,j, :)

]
= vect-soft

{[
(∇xuK+1 − dK

x )(i,j, :)

(∇yuK+1 − dK
y )(i,j, :)

]
,
λ1Wi,j

μ

}
for every (i, j )

5. Get VK+1
z by calculating

vK+1
z,( : , : ,k) = vect-soft

{
(∇zuK+1 − dK

z )( : , : ,k),
λ2W ′k

μ

}
for every k

6. Update the Lagrange multipliers:

DK+1
x = DK

x − (∇xUK+1 − VK+1
x )

DK+1
y = DK

y − (∇yUK+1 − VK+1
y )

DK+1
z = DK

z − (∇zUK+1 − VK+1
z )

7. Update the iteration: K ← K + 1

8. until
M∑
i=1

N∑
j=1

B∑
k=1

(uK
i,j,k − uK−1

i,j,k )2 < e.
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TABLE 2
Performance of the denoising methods for different noise levels on a portion of the Washington DC Mall image

σ Index Noise SSAHTV Fusion CTV MWF BiShr. HSSNR CSSWHTV

0.1 SNR 31.75 32.69 32.60 32.81 32.49 32.22 36.35 34.71
σSNR 0.0035 0.0030 0.0035 0.0039 0.0206 0.0059 0.0059 0.0048
MSA 1.94 1.62 1.69 1.61 1.21 1.73 1.10 1.29
σMSA 0.0009 0.0008 0.0008 0.0009 0.0024 0.0013 0.0009 0.0010
PARMs — 1/41 1/41,1/42 1/360,100 195,195,15 — — 1/120,1

0.2 SNR 25.74 27.59 27.51 27.71 28.40 26.42 31.50 30.84
σSNR 0.0022 0.0033 0.0030 0.0043 0.0212 0.0031 0.0092 0.0063
MSA 3.88 2.75 2.92 2.79 1.83 3.52 1.95 1.94
σMSA 0.0012 0.0013 0.0014 0.0019 0.0035 0.0015 0.0020 0.0018
PARMs — 1/14 1/14,1/14 1/140,100 195,195,15 — — 1/46,2

0.3 SNR 22.21 24.84 24.78 24.87 25.70 22.91 28.37 28.72
σSNR 0.0026 0.0033 0.0029 0.0024 0.0260 0.0027 0.0106 0.0044
MSA 5.79 3.64 3.82 3.72 2.34 5.30 2.80 2.44
σMSA 0.0023 0.0020 0.0020 0.0022 0.0056 0.0023 0.0041 0.0015
PARMs — 1/8 1/8,1/7 1/80,100 195,195,10 — — 1/25,4

0.4 SNR 19.71 22.97 22.89 22.93 23.75 20.41 26.06 27.21
σSNR 0.0018 0.0042 0.0033 0.0034 0.0153 0.0033 0.0053 0.0052
MSA 7.69 4.48 4.70 4.55 2.83 7.05 3.6527 2.86
σMSA 0.0019 0.0019 0.0013 0.0020 0.0044 0.0029 0.0020 0.0021
PARMs — 1/6 1/6,1/5 1/56,100 195,195,10 — — 1/18,5

0.6 SNR 16.19 20.49 20.55 20.34 21.12 16.91 22.70 25.16
σSNR 0.0027 0.0045 0.0036 0.0037 0.0104 0.0040 0.0093 0.0047
MSA 11.37 5.34 5.72 5.86 3.68 10.44 5.36 3.52
σMSA 0.0041 0.0026 0.0035 0.0023 0.0045 0.0048 0.0067 0.0035
PARMs — 1/3 1/3,1/3 1/33,100 195,195,10 — — 1/12,8

0.8 SNR 13.69 18.76 18.95 18.62 19.36 14.45 20.28 23.83
σSNR 0.0047 0.0049 0.0046 0.0039 0.0177 0.0051 0.0085 0.0074
MSA 14.91 6.06 6.48 6.76 4.40 13.66 7.06 3.99
σMSA 0.0098 0.0053 0.0050 0.0049 0.0070 0.0093 0.0089 0.0051
PARMs — 1/2 1/2,1/2 1/22,100 195,195,10 — — 1/11,14

1.2 SNR 10.17 16.26 16.64 16.42 16.97 10.97 16.82 22.06
σSNR 0.0032 0.0060 0.0040 0.0045 0.0125 0.0035 0.0090 0.0136
MSA 21.43 9.64 8.64 8.13 5.72 19.54 10.41 4.80
σMSA 0.0065 0.0069 0.0060 0.0073 0.0080 0.0087 0.0114 0.0076
PARMs — 1/2 1/2,1 1/13,100 195,195,10 — — 1/8,24

1.6 SNR 7.67 15.36 15.16 15.02 15.35 8.52 14.34 20.72
σSNR 0.0042 0.0036 0.0057 0.0043 0.0102 0.0046 0.0080 0.0137
MSA 27.21 8.56 7.92 9.07 6.94 24.97 13.65 5.52
σMSA 0.0109 0.0064 0.0055 0.0065 0.0068 0.0103 0.0139 0.0088
PARMs — 1 1,2 1/9,100 195,195,5 — — 1/6,31

Computational Complexity Analysis
Here, we analyze the complexity of the proposed Al-

gorithm 2. For an HSI of size M × N × B, the com-
putational time of Step 3 is O(21MNB ). For a vec-
tor of lengthn, the vect-soft threshold of the vector re-

quires O(3n + 4) time. Therefore, the complexity of Step
4 isO(MN (10B + 4)), and the complexity of Step 5 is
O(B(5MN + 4)). Finally, Step 6 requires O(6MNB ) time.
This leads to a total complexity of O(K(42MNB + 4MN
+ 4B)).
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FIG. 3. SNR versus band number for the different methods on a portion of the Washington DC Mall image.

Experiments and Discussion
To validate the effectiveness of the proposed method, we

performed both simulated experiments and real data experi-
ments. The proposed method was compared with the method
in Yuan et al. (2012) named SSAHTV, the method in Yuan
et al. (2014) named Fusion, the method in Zhang (2012) named
cubic total variation (CTV), the multidimensional Wiener fil-
tering (MWF) method in Muti and Bourennane (2007), the hy-
brid spatial–spectral noise-reduction (HSSNR) method in Oth-
man and Qian (2006), and the method called BiShrink, which
uses bivariate wavelet thresholding and a complex 3-D dual-tree
wavelet transform (Chen et al. 2011). The HSSNR and BiShrink
methods are both parameter free. For the HSSNR method, third-
order Coiflet wavelets and BayesShrink were used. For the pro-

posed method, λ1 was chosen from [1/150, 1/140,. . .,1/110,
1/100, 1/99,. . .,1], and λ2 was chosen from [1/5, 1/4, 1/3, 1/2,1,
2, 3,. . .,59, 60], for all the datasets.

Simulated Experiments
For the simulated experiments, we first added Gaussian noise

to the original HSI, and the different methods were then per-
formed on the noisy HSI. In this way, the original HSI can be
used to quantitatively assess the denoising results. A clear part
of the widely used Hyperspectral Digital Imagery Collection
Experiment (HYDICE) image of the Washington DC Mall of
size 200× 200× 148 was used for the simulated experiments.
The original data of size 1280 × 307 contain 191 bands after
removing the water absorption bands. A rectangular region from

FIG. 4. Denoising results in the simulated experiment when σ = 0.4: (a) original band 74 (1174.65 nm), (b) SSAHTV, (c) Fusion,
(d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.
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FIG. 5. Magnified results in the red rectangle of Figure 4: (a) original image, (b) SSAHTV, (c) Fusion, (d) CTV, (e) MWF,
(f) BiShrink, (g) HSSNR, and (h) CSSWHTV.

line 567 to 766, column 71 to 270, was cropped from the origi-
nal data for use in the experiments. To get rid of the disturbance
introduced by the initial noise, the bands of 1∼10, 19, 85∼89,
101∼108, 132∼142, and 187∼191, which contain visually de-

tectable noise, were also discarded. The gray values were then
normalized between [0, 1] before adding the noise. For every
band, the noise was additive Gaussian noise with zero-mean,
and the noise variance was varied along the spectral dimension

FIG. 6. Denoising results in the simulated experiment when σ = 0.4: (a) original band 146 (2414.49 nm), (b) SSAHTV, (c)
Fusion, (d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.
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FIG. 7. Magnified results in the red rectangle of Figure 6: (a) original image, (b) SSAHTV, (c) Fusion, (d) CTV, (e) MWF, (f)
BiShrink, (g) HSSNR, and (h) CSSWHTV.

(σ 2
k ) as a Gaussian shape centered at the middle band (B/2) as

σ 2
k = σ 2 · e−

(k−B/2)2

2η2

/∑B

l=1
e
− (l−B/2)2

2η2 , [34]

where the power of the noise is controlled by σ , and η controls
the Gaussian curve’s shape. In this study, η was set as 20. We
should note that this setting does not equal a real case and is
not critical for the design of the proposed method, but was used
only to test the proposed method.

In addition to the visual evaluation, we used the SNR in-
dex and the mean spectral angle (MSA) index to quantitatively
evaluate the quality of the results. For the different methods,
the parameters were set to achieve the best values of the SNR
index, and the used parameter values are listed sequentially in
the tables.

Let Xi
j and Yi

j denote the ith pixel in the jth band of the
original HSI X and the denoised result Y, respectively. The
SNR index in decibels is then defined as

SNR = 10log10

⎡
⎣ B∑

j=1

N∑
i=1

(Xi
j )2

/
B∑

j=1

N∑
i=1

(Xi
j − Yi

j )2

⎤
⎦ ,

[35]
where N is the total number of pixels in 1 band of the HSI.

The MSA index is the mean of the spectral angle (SA), which
measures the absolute angle between the spectral vectors of the
reference and denoised images. It reflects the spectral distortion

and is defined as

MSA = 1

N

∑N

i=1

∣∣∣∣∣∣arccos

∑B
j=1 Xi

j Yi
j√∑B

j=1 (Xi
j )2

∑B
j=1 (Yi

j )2

∣∣∣∣∣∣. [36]

The results of the different methods when σ in Equation (34)
was varied from 0.1 to 1.6 are shown in Table 2. In the table, for
different values ofσ , all the experiments were repeated 10 times.
The mean values of the SNR and MSA were calculated, and the
standard deviations of the SNR and MSA are written as σSNR
andσMSA, respectively. The best results for the SNR and MSA
are marked in bold and the second best are underlined. The
results indicate that CSSWHTV outperforms the other methods
in most cases. For the case when the noisy HSI already has a high
SNR (σ = 0.1), i.e., the noise in the HSI is generally not visually
detectable, HSSNR performs better than CSSWHTV due to its
effective preprocessing step of elevating the noise. For the other
cases, when the HSI contains moderate or high levels of noise,
the results indicate a better denoising capability for CSSWHTV.
Moreover, CSSWHTV is a relatively pure denoising method
when compared to HSSNR, which means there is a greater
potential for improvement.

To show the stability of all the methods in different bands,
the SNR was calculated separately for each band. To save space,
the results are shown in Figure 3 for the cases when the HSI
contained moderate noise (σ = 0.4) and heavy noise (σ = 1.6).
Note that the spectral band numbers in Figure 3 and hereafter
are not the numbers in the original data, but the recoded num-
bers after discarding the noisy bands. As shown in Figure 3,
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FIG. 8. Comparison of the SNR and MSA values of the methods adopting different combinations of the weights for different
levels of noise: (a) SNR, (b) MSA.
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FIG. 9. The experimental results using a piecewise constant HSI. The first row shows the results under Case 1, and the second
row shows the results under Case 2: (a) band 210 (988.00 nm) of the noisy HSI, (b) FV i,j , (c) PV i,j /FV i,j , and (d) the proposed
weight.

FIG. 10. The results using the CSSWHTV method with different iteration numbers: (a) SNR, (b) MSA.

CSSWHTV is robust for all the bands and shows an obvious ad-
vantage over the other methods in the bands with heavy noise.
For a more thorough evaluation of the different methods, the
results and the magnified results of band 74, which contained
relatively heavy noise, and those of band 146, which contained
a relatively low level of noise, are shown in Figures 4–7, re-

spectively. From the results, it is clear that the results of the
proposed CSSWHTV method look sharper and clearer, and it
appears to be the best method because it can remove most of
the noise and maintain the details without introducing any ar-
tifacts. Comparing the results of CTV and CSSWHTV, which
are both 3-D TV denoising models, it is easy to see the ad-

TABLE 3
Values of the parameters for the different methods in the real data experiments

Data SSAHTV Fusion CTV MWF BiShr. HSSNR CSSWHTV

Urban λ = 1
λ1 = 1
λ2 = 1

λ=1/20
β = 100

k1 = 100
k2 = 100
k3 = 10

— —
λ1 = 1/5
λ2 = 1

Indian Pines λ = 1/4
λ1 = 1/4
λ2 = 1/4

λ=1/22
β = 100

k1 = 80
k2 = 80
k3 = 10

— —
λ1 = 1/4
λ2 = 50
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FIG. 11. Denoising results of the Urban dataset in the real data experiments: (a) noise band 100 (1321.80 nm), (b) SSAHTV,
(c) Fusion, (d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.

vantages of CSSWHTV, which can automatically adjust the pe-
nalizing strength for each pixel in both the spatial and spectral
dimensions.

Based on the combination of the vectorial TV norm and
the weight, the CSSWHTV method can automatically adjust

the penalizing strength in a 3-D manner in both the spatial
and spectral dimensions. Because the weights Wi,j and W ′k are
used in both the spatial and spectral dimensions, as in Equation
(20), the effect on the SNR and MSA of using only 1 of them,
neither of them, and both of them, were compared and are

FIG. 12. Denoising results of the Urban dataset in the real data experiments: (a) noise band 192 (2456.57 nm), (b) SSAHTV, (c)
Fusion, (d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.
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FIG. 13. Denoising results of the Urban dataset in the real data experiments: (a) combination of noise bands 1 (401.29 nm), 103
(1364.81 nm), and 192 (2456.57 nm); (b) SSAHTV; (c) Fusion; (d) CTV; (e) MWF; (f) BiShrink; (g) HSSNR; and (h) CSSWHTV.

depicted in Figure 8. The regularization parameters for all the
cases were adjusted to achieve the highest SNR values. The
results were averaged over 10 experiments, and the error bars
show the standard deviations for the experiments. As shown in
Figure 8, for the different levels of noise, better results can be

acquired by using Wi,j or W ′k than by not using either of them,
and the best results are achieved when both Wi,j and W ′k are
used.

In the following, the reason behind the good performance of
the weight will be further illustrated with a simulated piecewise

FIG. 14. Denoising results of the Indian Pines dataset in the real data experiments: (a) noise band 102 (1342.73 nm), (b) SSAHTV,
(c) Fusion, (d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.
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FIG. 15. Denoising results of the Indian Pines dataset in the real data experiments: (a) noise band 204 (2479.25 nm), (b) SSAHTV,
(c) Fusion, (d) CTV, (e) MWF, (f) BiShrink, (g) HSSNR, and (h) CSSWHTV.

constant HSI. Four types of mineral spectra from the United
States Geological Survey (USGS) spectral library were used to
generate the simulated HSI. The simulated HSI consisted of
420 bands, 128 samples of 128 lines, and 4 blocks. In the order
of the top-left, bottom-left, top-right, and bottom-right blocks,
every pixel in the same block had the same spectra of alunite,
andradite, calcite, and chlorite, respectively. Gaussian random
noise was added to the simulated data, and the noise variances
follows Equation (34). Here, 2 cases were considered to test the
proposed weight. In Case 1, we directly added noise to the whole
data, and the SNR of the noisy HSI was 18.89 dB. In Case 2,
we independently added Gaussian noise to the 4 blocks, and the
SNR of the whole noisy HSI was 14.23 dB, and the SNR values
of the top-left, bottom-left, top-right, and bottom-right blocks
were 23.37 dB, 19.58 dB, 12.49 dB, and 5.20 dB, respectively.
Note that the configuration in Case 2 does not imply that the
noise variance varies as much within a band as in a real case, but
is to help analyze and show the changes of FV i,j , PV i,j /FV i,j ,

and the weight Wi,j with respect to the magnitude of the noise
intensity in the image.

In Figure 9, the derivation process of the proposed weight is
illustrated. Comparing Figure 9(a) and Figure 9(b), it is clear
that the value of FV i,j is positively related to the noise intensity
and the signal variation. In Figure 9(c), it is shown that the value
of PV i,j /FV i,j can effectively represent the signal variation.
As shown in Figure 9(d), the proposed weight is positively
correlated with the noise intensity and negatively correlated
with the variation of the pixel.

The convergence of the proposed CSSWHTV method was
proved, and here we only give the experimental analysis. To save
space, only the results when σ = 0.4 are reported, because the
other results are consistent with these observations. Figure 10
shows the SNR and MSA values of the results produced by the
CSSWHTV method with different iteration numbers, and it is
shown that the CSSWHTV method can converge in only a few
iterations.

TABLE 4
Classification accuracies using SVM on different denoising results of Indian Pines dataset

Original
image SSAHTV Fusion CTV MWF BiShrink HSSNR CSSWHTV

OA 74.74% 89.33% 90.29% 88.92% 80.21% 84.84% 78.42% 91.99%
Kappa 0.7075 0.8755 0.8868 0.8709 0.7704 0.8235 0.7498 0.9064
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FIG. 16. Denoising results of the Indian Pines dataset in the real data experiments: (a) combination of noise bands 3 (419.62 nm),
102 (1342.73 nm), and 204 (2479.25 nm); (b) SSAHTV; (c) Fusion; (d) CTV; (e) MWF; (f) BiShrink; (g) HSSNR; and (h)
CSSWHTV.

Real Data Experiments
To further confirm the effectiveness of the proposed method,

2 real data experiments were performed. In the first experiment,
we used the well-known HYDICE Urban dataset, which has a
size of 307×307×210. A portion of the data of size 200×202×
210 from line 93 to 292, column 95 to 296, was used. In the
other experiment, we used the well-known AVIRIS Indian Pines
dataset, which has a size of 145× 145× 220. For the different
methods, the parameters were set empirically to achieve the best
visual quality, and the parameter values are listed in Table 3.

For the Urban data, the bands 140–151 and 206–210, which
are atmospheric and water absorption bands, have been removed
from the original hyperspectral image. Therefore, there were
only 193 bands used in the experiment. Different levels of noise
are contained in the image, as shown in Figure 11(a), and Fig-
ure 12(a). For band 100, the noise is relatively low, and for
band 192, there are stripes and random noise. From the results
shown in Figure 11, we can see that the CSSWHTV method
can effectively preserve the edges and textures for the band with
a low level of noise. From the results shown in Figure 12, the
CSSWHTV method shows its ability to remove random and
striping noise, and the result of the CSSWHTV method looks
very sharp and clear, without any artifacts. Figure 13 also shows
the color results with bands 1, 103, and 192 as the red, green,
and blue colors, respectively, and the effective performance of
the proposed method is clear. From the above results, it appears
that the proposed method can perform even better with the real
Urban data. Due to the varying noise strength, it is difficult for
the MWF, BiShrink, and CTV methods to effectively remove

the stripes and preserve the details. For the SSAHTV method,
the regularization parameter has to be set as a large value to
remove all the stripes, at the cost of blurred edges and textures.
For the CSSWHTV method, the TV regularization term in the
spectral dimension can give a smooth prior along the spectral
direction, which makes it relatively easy to remove the stripes.

For the Indian Pines data, bands 150–163, which are at-
mospheric and water absorption bands, have been removed
from the original hyperspectral image. Therefore, there were
only 206 bands used in the experiment. Figure 14(a) and Fig-
ure 15(a) show the noise bands 102 and 204 with relatively low
and high noise levels, respectively. From the results, we can
see that the CSSWHTV method outperforms the other methods
for the bands with different noise cases. Figure 16 shows the
color results composed of bands 3, 102, and 204 for the dif-
ferent methods, which further validate the performance of the
CSSWHTV method. Because the ground truth data is available
for the Indian Pines dataset, we also performed classification
on the results. By using cross-validation, 9 classes of corn-
notill, corn-mintill, grass/pasture, grass/trees, hay-windrowed,
soybeans-notill, soybeans-mintill, soybeans-clean, and woods
were used in the experiment. Fifty training samples were ran-
domly chosen for each class, and the Support Vector Machine
(SVM) method is used for the classification. The classification
process is repeated 10 times, and the mean overall accuracy
(OA) and mean kappa coefficient are reported in Table 4. From
the results, it shows that the improvement of the classification
accuracy after image denoising is obvious, and the proposed
method achieves the best results.

D
ow

nl
oa

de
d 

by
 [

G
he

nt
 U

ni
ve

rs
ity

] 
at

 0
1:

00
 0

6 
A

pr
il 

20
16

 



VOL. 42, NO. 1, FEBRUARY/FÉVRIER 2016 19

CONCLUSIONS
In this article, a combined spatial and spectral weighted hy-

perspectral total variation (CSSWHTV) model has been pro-
posed for denoising HSIs. By viewing the HSI as a 3-D cube, the
new model combines the TV regularizations in both the spatial
and spectral dimensions into a unified framework. Moreover, to
clearly remove the noise and retain the edges, the regularization
terms have been designed to be able to automatically control
the penalizing strength for each pixel in both the spatial and
spectral dimensions. To solve the proposed new model, we have
proposed a new algorithm, which is a version of the well-known
ADMM procedure, which is fast and has a good convergence
property. Both simulated and real data experiments were con-
ducted to validate the effectiveness of the proposed method.
The consistent improvements when compared with the other
well-known methods in different noise cases show that the pro-
posed method is robust and can effectively remove noise while
preserving the details, without introducing any new artifacts.

Despite the effective performance of the proposed method,
an investigation into what extent it could improve the precision
of the subsequent applications would be interesting. The au-
tomatic and efficient selection of the regularization parameters
also needs further study.
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Iordache, M.-D., Bioucas-Dias, J. M., and Plaza, A. 2014. “Collabo-
rative sparse regression for hyperspectral unmixing.” IEEE Trans-
actions on Geoscience and Remote Sensing, Vol. 52(No. 1): pp.
341–354.

Jiang, C., Zhang, H., Shen, H., and Zhang, L. 2014. “Two-step sparse
coding for the pan-sharpening of remote sensing images.” IEEE Jour-
nal of Selected Topics in Applied Earth Observations and Remote
Sensing, Vol. 7(No. 5): pp. 1792–1805.

Kuybeda, O., Malah, D., and Barzohar, M. 2007. “Rank estimation and
redundancy reduction of high-dimensional noisy signals with preser-
vation of rare vectors.” IEEE Transactions on Signal Processing, Vol.
55(No. 12): pp. 5579–5592.

Letexier, D., and Bourennane, S. 2008. “Noise removal from hyper-
spectral images by multidimensional filtering.” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 46(No. 7): pp. 2061–2069.

Li, T., Chen, X.-M., Xue, B., Li, Q.-Q., and Ni, G.-Q. 2010. “A total
variation denoising algorithm for hyperspectral data.” Paper pre-
sented at Photonics Asia, Beijing, China, October 2010.

Lin, T., and Bourennane, S. 2013a. “Hyperspectral image processing
by jointly filtering wavelet component tensor.” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 51(No. 6): pp. 3529–3541.

Lin, T., and Bourennane, S. 2013b. “Survey of hyperspectral image de-
noising methods based on tensor decompositions.” EURASIP Jour-
nal on Advances in Signal Processing, Vol. 2013(No. 1): pp. 1–11.

Liu, X., Bourennane, S., and Fossati, C. 2012. “Denoising of hyperspec-
tral images using the PARAFAC model and statistical performance
analysis.” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 50(No. 10): pp. 3717–3724.

Méndez-Rial, R., Calvino-Cancela, M., and Martı́n-Herrero, J. 2010.
“Accurate implementation of anisotropic diffusion in the hypercube.”
IEEE Geoscience and Remote Sensing Letters, Vol. 7(No. 4): pp.
870–874.

Maggioni, M., Katkovnik, V., Egiazarian, K., and Foi, A. 2013. “Non-
local transform-domain filter for volumetric data denoising and re-
construction.” IEEE Transactions on Image Processing, Vol. 22(No.
1): pp. 119–133.

Martı́n-Herrero, J. 2007. “Anisotropic diffusion in the hypercube.”
IEEE Transactions on Geoscience and Remote Sensing, Vol. 45(No.
5): pp. 1386–1398.

Mendez-Rial, R., and Martin-Herrero, J. 2012. “Efficiency of semi-
implicit schemes for anisotropic diffusion in the hypercube.” IEEE
Transactions on Image Processing, Vol. 21(No. 5): pp. 2389–2398.

Muti, D., and Bourennane, S. 2007. “Survey on tensor signal algebraic
filtering.” Signal Processing, Vol. 87(No. 2): pp. 237–249.

Othman, H., and Qian, S.-E. 2006. “Noise reduction of hyperspec-
tral imagery using hybrid spatial-spectral derivative-domain wavelet
shrinkage.” IEEE Transactions on Geoscience and Remote Sensing,
Vol. 44(No. 2): pp. 397–408.

Perona, P., and Malik, J. 1990. “Scale-space and edge detection using
anisotropic diffusion.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 12(No. 7): pp. 629–639.

Portilla, J., Strela, V., Wainwright, M. J., and Simoncelli, E. P. 2003.
“Image denoising using scale mixtures of Gaussians in the wavelet
domain.” IEEE Transactions on Image Processing, Vol. 12(No. 11):
pp. 1338–1351.

Qian, Y., Shen, Y., Ye, M., and Wang, Q. 2012. “3-D nonlocal means
filter with noise estimation for hyperspectral imagery denoising.” Pa-
per presented at IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Munich, Germany, July 2012.

Qian, Y., and Ye, M. 2013. “Hyperspectral imagery restoration us-
ing nonlocal spectral-spatial structured sparse representation with
noise estimation.” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing Vol. 6(No. 2): pp. 499–
515.

Rasti, B., Sveinsson, J. R., and Ulfarsson, M. O. 2014. “Wavelet-based
sparse reduced-rank regression for hyperspectral image restoration.”
IEEE Transactions on Geoscience and Remote Sensing, Vol. 52(No.
10): pp. 6688–6698.

Rudin, L. I., Osher, S., and Fatemi, E. 1992. “Nonlinear total variation
based noise removal algorithms.” Physica D: Nonlinear Phenomena,
Vol. 60(No. 1): pp. 259–268.

Selesnick, I. W. 2002. “Bivariate shrinkage functions for wavelet-based
denoising exploiting interscale dependency.” IEEE Transactions on
Signal Processing, Vol. 50(No. 11): pp. 2744–2756.
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